

MCB-003-1162003 Seat No. _____

M. Sc. (Sem. II) (CBCS) Examination

April / May - 2018

Mathematics: CMT - 2003

(Topology - II)

Faculty Code: 003

Subject Code: 1162003

Time	e : 2	1/2 Hours] [Total Marks : 7	0
Inst	ructi	ions: (1) There are five questions in this paper.	
		(2) Each question carries 14 marks.	
		(3) All questions are compulsory.	
1	Fill	in the blanks : (Each question carries two marks) 1	4
	(a)	In a Hausdorff space every singleton subset is	
	(b)	Every closed subspace of a compact space is	
	(c)	The one point compactification of a locally compact, non-compact hausdorff space is and	
	(d)	A closed subspace of any complete metric space is	
	(e)	Tietz's extension theorem is equivalent to the separation axiom	
	(f)	A closed and bounded subset of $\mathbb Q$ need not be	
	(g)	An infinite set with co-finite topology satisfies separation axiom but does not satisfy separation axiom.	

1

[Contd....

MCB-003-1162003]

2	Atte	empt any two of the following:	14
	(a)	Prove that any open subspace of a locally compact	
		Hausdorff space is locally compact.	
	(b)	State and prove Lebesgue's covering lemma.	
	(c)	Prove that	
		(i) Every subspace of a T_1 – space is T_1 – space.	
		(ii) Suppose $X \times Y$ is hausdorff. Prove that X and Y both are hausdorff.	
3	All	are compulsory:	14
	(a)	Prove that any compact hausdorff space is regular.	6
	(b)	Prove that a T_1 space X is regular if and only if	4
		for every open set U and $x \in U$ there is an open set V such that $x \in V \subset \overline{V} \subset U$.	
	(c)	Prove that (\mathbb{R},d) is a complete metric space.	4
		OR	
3	All	are compulsory:	14
	(a)	Prove that every sequentially metric space is compact.	6
	(b)	Give an example of an infinite topological space which is not compact.	4
	(c)	Prove that a T_1 space X is normal if and only if for	4
		each closed set A and an open set U with $A \subset U$ there is a closed set V that $A \subset V \subset \overline{V} \subset U$.	
4	Atte	empt any two of the following:	14
	(a)	State Tube Lemma and then prove that $X \times Y$ is compact if both X and Y are compact.	
		compact if both A and I are compact.	
	(b)	Prove that $C(X,Y)$ and $B(X,Y)$ are closed subspaces of the space Y^X (with the topology induced from uniform metric).	

2

MCB-003-1162003]

[Contd....

5 Do as directed: (Each question carries two marks)

14

- (a) Give the two subsets of \mathbb{R} (the set of real numbers with standard topology) such that one is closed but not bounded and the other is bounded but not closed.
- (b) Give the definition of a limit point compact space.
- (c) State (i) Urysohn's lemma. (ii) Tietz's extension theorem.
- (d) Give an example of uncountable subset of \mathbb{R} which is not locally compact.
- (e) Determine if the set $\mathbb{R} \{0\}$ is a complete subspace of \mathbb{R} or not?
- (f) $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}\right\} U\left\{0\right\}$. Is A a locally compact subset of \mathbb{R} ? Give reasons for your answer.
- (g) Give an example of compact metric space which is uncountable.